BAC 2012

SÉRIES: SHT-TSS

1°/ A la suite d'élection présidentielle au Gondwana, le président sortant (Hyper Président) perd au profit d'un Président Normal. Ce nouveau Président Normal décide la baisse de 30% de son salaire. Sachant que le Président Normal a pour salaire 2 130 000 cfa bruts par mois maintenant, combien était le salaire mensuel de son prédécesseur ? (2pts)

NB: On ne prendra pas de chiffre après la virgule.

2°/ Calculer la fonction dérivée de chacune des fonctions suivantes :

a-)
$$f(x) = \frac{2x^3}{6} - \frac{1}{5}x^2 + 0.5x + \sqrt{7}$$
 (1pt)

b-) $g(x) = (3x+1)^3$ (*Ipt*); c) $h(x) = 1 - 4x^2$ (*Ipt*)

En 2011 une région du sahel comptait 50 000 habitants et la population augmente de 20% par an en tenant compte des décès. On modélise la population dans cette région par la fonction f définie par $f(x) = 12\,000x + 48\,000$, où x, non nul, indique le nombre d'années après 2011.

1°/ Quelle sera la population en 2012 ? en 2013 ? (2pts)

2°/a-) En quelle année la population sera-t-elle de 108 000 habitants ? (1,5pts)

b-) La production agricole n'est suffisante que pour nourrir 168 000 habitants. En quelle année peut-on prévoir la première crise alimentaire ? (1,5pts)

Problème -----[10 points]

Le plan est muni d'un repère orthonormé (O;I;J). Soit f la fonction définie de \mathbb{R} vers \mathbb{R} par : $f(x) = 1 + (\ln x)^2$

 $1^{\circ}/a$ -) Déterminer l'ensemble de définition de f(0.5pt)

b-) Calculer les limites de f aux bornes de son ensemble de définition. (0,5pt)

 $2^{\circ}/a$ -) Calculer f'(x). (*Ipt*)

b-) Dresser le tableau des variations de f. (2pts)

 3° / Déterminer une équation de la tangente (T) à la courbe (\mathscr{E}) de f au point d'abscisse e.

 $4^{\circ}/ \text{Tracer} (T) \text{ et } (\mathscr{E}) \text{ dans le repère } (O; I; J)$ (3pts)

5°/ a-) Vérifier que la fonction G définie par : $G(x) = \frac{x^3}{3} + 3\frac{x^2}{2} - 5x + 2$ est une primitive de la fonction g définie par $g(x) = x^2 + 3x - 5$ sur $[0; +\infty[$ (1pt)

b-) Calculer le réel $\int_0^3 g(x)dx$ (2pts)

SÉRIES:

SHT-TSS

SESSION spéciale d'Oct 2012

On se propose de résoudre dans IR l'équation (E) : $x^4 - 10x^2 + 9 = 0$.

- 1°/ Résoudre dans IR l'équation (E') : $X^2 10X + 9 = 0$. (1pt)
- 2° / En posant $x^2 = X$, utiliser les solutions de l'équation (E') pour trouver celles de (E).
- 3°/ En réduire la résolution dans IR des équations :

a)
$$(\ln x)^4 - 10(\ln x)^2 + 9 = 0$$
. $(1.5pt)$;

a) $(\ln x)^4 - 10(\ln x)^2 + 9 = 0$. (1.5pt); b) $\ln(10 - x^2) = 2\ln 3 - \ln x^2$. (1.5pt)

Exercice 2 [4 points]

1°/ Calculer la fonction dérivée de chacune des fonctions définies par :

a)
$$f(x) = (3x^2 - x + 2)^3$$
. (1pt) b) $g(x) = \frac{x^2 + 1}{x + 2}$ (1pt)

b)
$$g(x) = \frac{x^2 + 1}{x + 2}$$
 (1pt)

2°/ Calculer les limites suivantes : $\lim_{x \to 1} \frac{x+1}{(x-1)^2}$ (1pt); $\lim_{x \to +\infty} -x^2 + 15x + 30$ (1pt)

Problème[11 points]

On considère la parabole \mathcal{G} définie par $f(x) = x^2 - 2x - 3$

- 1° / Calculer les limites de f(x) aux bornes de son ensemble de définition. (*1pt*)
- 2°/ Déterminer les coordonnées des points d'intersection de 9 avec l'axe des abscisses. (1.5pt)
- 3° / Calculer f'(x) et en déduire le tableau de variation de f. (2pts)
- 4°/ Déterminer l'équation de la tangente (T) à \mathcal{G} au point d'abscisse $\frac{3}{2}(1.5pt)$
- 5°/ Déterminer les coordonnées des points communs à la droite (Δ): y = x + 1 et \mathcal{G} (1,5pt)
- 6° / Construire dans le même repère la parabole 9, la droite (Δ) et la tangente (T) (2pts)
- 7° / Hachurer la surface du domaine plan limité par P et (Δ), puis Calculer son aire (1,5pt)