Série: D Durée: 4 h Coefficient: 4

EXERCICE 1

- 1- On considère la fonction h dérivable et définie sur l'intervalle [0; 1] par : $h(x) = 2x x^2$.
 - a) Démontrer que h est strictement croissante sur l'intervalle [0; 1].
 - b) En déduire que l'image de l'intervalle [0; 1] par h est l'intervalle [0; 1].
- Soit *u* la suite définie par :

$$u_0 = \frac{3}{7}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = h(u_n).$

- a) Démontrer par récurrence que : $\forall n \in \mathbb{N}, 0 < u_n < 1$.
- b) Démontrer que la suite u est croissante.
- c) Justifier que la suite u est convergente.
- **3-** On considère la suite v définie par : $\forall n \in \mathbb{N}, v_n = \ln(1 u_n)$.
 - a) Démontrer que v est une suite géométrique de raison 2.
 - b) Exprimer v_n en fonction de n.
 - c) Calculer la limite de la suite v.
 - d) En déduire la limite de la suite u.

EXERCICE 2

Le plan complexe est muni d'un repère orthonormé direct (O; \vec{u} , \vec{v}), (unité graphique : 2 cm). On considère la transformation \mathcal{L} du plan qui, à tout point M d'affixe z, associe le point M' d'affixe z' telle que :

$$z' = (1 - i\frac{\sqrt{3}}{3})z + 2i\frac{\sqrt{3}}{3}.$$

1- a) Soit Ω le point d'affixe 2.

Vérifier que : $\mathcal{S}(\Omega) = \Omega$.

- b) Justifier que \mathcal{S} est une similitude directe dont on précisera les éléments caractéristiques.
- a) Démontrer que : $\forall z \neq 2, \frac{z'-z}{2-z} = i\frac{\sqrt{3}}{3}$.
 - b) En déduire que le triangle M Ω M'est rectangle en M.
 - c) Donner un programme de construction de l'image M' par $\mathcal G$ d'un point M donné.
- 3- a) Placer les points A et B d'affixes respectives -1 + i et 5 i

dans le plan muni du repère $(O; \vec{u}, \vec{v})$.

Construire les images respectives A' et B' de A et B par \mathcal{S} .

b) On note z_A , z_B , $z_{A'}$ et $z_{B'}$ les affixes respectives des points A, B, A' et B'.

Démontrer que : z_A , $-z_A = z_B - z_B$.

c) En déduire la nature du quadrilatère AA'BB'.

PROBLÈME

Partie A

Soit *g* la fonction dérivable et définie sur \mathbb{R} par : $g(x) = -1 + (2 - 2x)e^{-2x + 3}$.

- **1-** Calculer les limites de g en $-\infty$ et en $+\infty$.
- **2-** *a)* Soit *g*' la fonction dérivée de *g*.

Justifier que : $\forall x \in \mathbb{R}, g'(x) = (4x - 6)e^{-2x + 3}$.

- b) Étudier le signe de g'(x) suivant les valeurs de x.
- c) Justifier que : $g(\frac{3}{2}) = -2$.
- d) Dresser le tableau de variations de g.
- **3-** a) Démontrer que l'équation g(x) = 0 admet dans \mathbb{R} une solution unique notée α .
 - *b*) Vérifier que : $0.86 < \alpha < 0.87$.
 - c) Justifier que : $\forall x \in]-\infty$; $\alpha[, g(x) > 0$ et $\forall x \in]\alpha; +\infty[, g(x) < 0.$

Partie B

Le plan est muni d'un repère orthonormé (O, I, J), (unité graphique : 2 cm).

On considère la fonction f dérivable et définie sur \mathbb{R} par : $f(x) = -x + (x - \frac{1}{2})e^{-2x + 3}$.

On note (\mathscr{C}) la courbe représentative de f.

- **1-** *a)* Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
 - b) En déduire que (\mathscr{C}) admet une branche parabolique de direction celle de (OJ) en $-\infty$.
- 2- a) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - b) Démontrer que la droite (\mathscr{D}) d'équation y = -x est asymptote à (\mathscr{C}) en $+\infty$.
 - c) Étudier la position de (\mathscr{C}) par rapport à (\mathscr{D}) .
- 3- a) Soit f' la fonction dérivée de f.

Démontrer que : $\forall x \in \mathbb{R}, f'(x) = g(x)$.

- b) En déduire les variations de f.
- c) Dresser le tableau de variations de f. On ne calculera pas $f(\alpha)$.
- 4- Construire (\mathcal{G}) et (\mathcal{C}) sur le même graphique.

On précisera les points de (\mathscr{C}) d'abscisses 0 ; $\frac{1}{2}$; $\frac{3}{2}$; 4.

On prendra : $\alpha = 0.865$ et $f(\alpha) = 0.4$.

5- Soit t un nombre réel strictement supérieur à $\frac{3}{2}$. On désigne par $\mathcal{A}(t)$ l'aire en cm² de la partie du plan limitée par la courbe (\mathcal{C}), la droite (\mathcal{D}) et les droites d'équations $x = \frac{3}{2}$ et x = t.

On pose : $I_t = \int_{\frac{3}{2}}^t (x - \frac{1}{2})e^{-2x + 3} dx$.

- a) À l'aide d'une intégration par parties, justifier que : $I_t = \frac{3}{4} \frac{t}{2}e^{-2t+3}$.
- b) En déduire $\mathcal{A}(t)$.
- c) Calculer $\lim_{t\to+\infty} \mathcal{A}(t)$.