

EPREUVE DE MATHEMATIQUES BACC CDE (GCE AL) 2011

EXERCICE I {5 pts}

En octobre 2006, la faculté de génie industriel, à son ouverture avait une population de 100 étudiants (élèves ingénieurs). Un bureau d'études de la place en évaluant ses programmes et le système qui sera appliqué (LMD : Licence, Master, Doctorat), prévoit qu'à partir de la rentrée académique 2006 :

- Le nombre d'étudiants augmente chaque année de 10% du fait d'ouverture des nouvelles filières de spécialisation et des différents niveaux d'accès à la FGI (bac et licence);
- Du fait des mouvements migratoires (évolution d'un niveau à l'autre, changement d'établissement généralement pour l'étranger, les démissions, les décès et les exclusions) ,200 places seront disponibles chaque année dans cette école jusqu'à nouvel avis.

<u>PARTIE A</u>: Pour des besoins de construction des locaux et de leurs extensions, la modélisation numérique suivante est adoptée. Pour tout entier naturel n, on note u_n le nombre d'étudiants de cette école en octobre de l'année 2006+n . Ainsi, $u_0 = 100$.

- 1) Calculer u₁etu₂.
- 2) Justifier que, pour tout entier naturel $n_n u_{n+1} = 1.1 u_n + 200$
- 3) Pour tout entier naturel n, on pose $v_n = u_n + 2000$.
 - a) Calculer v_0 .
 - b) Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera le premier terme et la raison.
 - c) Exprimer v_n en fonction de n. En déduire u_n
 - d) Calculer la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
 - e) Peut-on avoir un effectif stable dans cette école?

<u>PARTIE B</u>: Le but de cette partie est de prévoir l'évolution de la population jusqu'en 2035, en utilisant le modèle théorique étudié à la PARTE A.

- 1) Ouel sera le nombre d'étudiants de la faculté en octobre 2035?
- 2) A partir de quelle année le nombre d'ingénieurs formés sera de 2000 ?
- 3) Quel sera le nombre d'ingénieurs en octobre 2035?

EXERCICE II {5 pts}

Dans le plan complexe rapporté au repère orthonormal direct $(A; \vec{u}, \vec{v})$, unité graphique 1 cm, on considère les points B, D définis par $\overrightarrow{AB} = 2\vec{u}$, $\overrightarrow{AD} = 3\vec{v}$ et C tel que ABCD soit un rectangle. On fera une figure qui sera complétée au fur et à mesure de l'exercice.

- 1. Soit E l'image de B par la translation de vecteur \overrightarrow{DB} . Déterminer l'affixez_E et E.
- 2. Déterminer les nombres réels a, b tels que le point F d'affixe $z_F = 6 i$ (i le nombre complexe) soit le barycentre des points A, B, C affectés des coefficients a, b et 1.
- 3. On considère la similitude s qui transforme A en E et B en F. A tout M d'affixe z, on associe le point M' d'affixe z', image de M par s.
 - a) Exprimer z' en fonction de s.
 - b) Déterminer le centre I, l'angle et le rapport de la similitude.
 - c) Déterminer les images de C et de D par s.
 - d) Calculer l'aire de l'image par s du rectangle ABCD.

4.

- a) Déterminer l'ensemble (Ω) des points M du plan tels que $\left\| \overrightarrow{6MA} 10\overrightarrow{MB} + \overrightarrow{MC} \right\| = 9$
 - b) Déterminer en précisant ses éléments caractéristiques, l'image de (Ω) par s.

PROBLEME: {10 pts}

Dans tout le problème désigne un entier naturel non nul.

<u>Partie I</u>: Soit g_n la fonction définie sur $]0; +\infty[$ par $g_n(x) = x - n + \frac{n}{2}lnx$.

1. Etudier les variations de g_n . Puis déterminer les limites de g_n en 0 et en $+\infty$.

2.

- a) En déduire l'existence d'un réel positif α_n unique tel que $g_n(\alpha)=0$.
- b) Montrer que : $1 \le \alpha_n < e^2$.
- c) Monter que : $\ln(\alpha_n) = 2 \frac{2}{n}\alpha_n$

Exprimer $g_{n+1}(\alpha_n)$ en fonction de α_n et de n. En déduire que $\alpha_{n+1} > \alpha_n$.

- a) Montrer que la suite de terme général α_n est convergente. On note L sa limite.
- b) En utilisant 2.c), calculer $\lim_{n\to+\infty} \ln(\alpha_n)$ et en déduire L.

Partie II : Soit f la fonction définie sur]0; + ∞ [par (x) = $\frac{2x - lnx}{2\sqrt{x}}$

Le plan est rapporté à un repère orthonormal $(0; \vec{\iota}, \vec{j})$ (unité graphique : 2 cm).

On appelle C la représentation graphique de f et C_0 la représentation graphique de la fonction $\rightarrow \sqrt{x}$.

- 1. Déterminer les limites de f en 0 et en $+\infty$. Puis calculer f'(x) et vérifier que $f'(x) = \frac{g_1(x)}{2x\sqrt{x}}$.
- 2. Dresser le tableau de variation de f.
- 3. Determiner $\lim_{x\to+\infty} [f(x)-\sqrt{x}]$. Que peut-on en déduire pour C?
- 4. Préciser les positions relatives de C et C₀.
- 5. Dessiner C et Co.

Partie III : Etude de la suite (U_n) définie par $U_n = \sum_{k=0}^n \frac{1}{n} f\left(1 + \frac{k}{n}\right)$.

1. Soit
$$J = \int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{2x - \ln x}{2\sqrt{x}} dx$$

- a) Calculer $\int_1^2 \frac{\ln x}{2\sqrt{x}} dx$ à l'aide d'une intégration par parties.
- b) En déduire J.
- 2. Soit k un entier naturel tel que : $0 \le k \le n-1$. En utilisant les variations de f sur $[1; +\infty[$, montrer que : $\frac{1}{n}f\left(1+\frac{k}{n}\right) \le \int_{1+\frac{k}{n}}^{1+\frac{k+1}{n}}f(x)dx \le \frac{1}{n}f\left(1+\frac{k+1}{n}\right)$.
- 3. En déduire que $U_n \frac{f(2)}{n} \le J \le U_n \frac{f(1)}{n}$, puis : $J + \frac{f(1)}{n} \le U_n \le J + \frac{f(2)}{n}$ et $\lim_{n \to +\infty} U_n$.