

EPREUVE DE PHYSIQUES, SERIES F ET BT 2009

Durée (time): 04 heures.

EXERCICE I: Electrocinétique des courants transitoires (5 pts)

Une ampoule de néon N ne s'allume que si la tension à ses bornes atteint la valeur V_a dite tension d'allumage. Elle reste alors allumée tant que la tension à ses bornes reste supérieure à V_e dite tension d'extinction ($V_e < V_a$). Lorsque la lampe est éteinte, sa résistance est pratiquement est pratiquement infinie ; elle prend la valeur graque celle-ci est allumée.

On réalise le circuit électrique schématisé sur la figure 1 ci-contre :

- a) Etudier la tension u(t) aux bornes de N [on supposera u(0)=0]
 dans le cas ou un régime périodique s'établit;
- b) Préciser le domaine des valeurs possibles de la tension E.

Figure 1

On posera :
$$\tau = RC \text{ et } \frac{r}{r+R} = \alpha$$

EXERCICE II: (4 pts)

Un oscilloscope branché par l'intermédiaire d'une sonde de tension permet d'observer la tension apparaissant entre deux bornes de l'alternateur monophasé d'un groupe électrogène. L'oscillogramme observé est donné à la figure 2 ci-dessous :

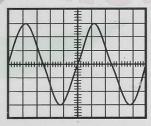


Figure 2 : calibres de l'oscilloscope : voie 1 : 100V/division. Base de temps : 5 ms/division

- a) Déterminer la période T et la fréquence f de cette tension.
- b) En déduire le nombre de paire de pôles de l'alternateur sachant que $n=240\,tr/min$.
- c) Calculer la fréquence et la tension lorsque la vitesse augmente à $n=300\,tr/min$.
- d) Déterminer la valeur efficace V de la tension observée.

EXERCICE III: (5 pts)

Soit (Figure 3) un mécanisme de puissance par poulie courroie :

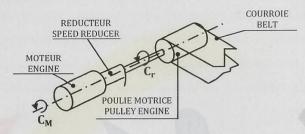


Figure 3

Notations:

- ω_m la vitesse de rotation du moteur
- ω_r la vitesse de rotation de la poulie motrice
- P la puissance motrice nécessaire au démarrage
- C le couple moteur nécessaire au démarrage
- P_r la puissance résistante au niveau de la poulie réceptrice
- C_r le couple résistant au niveau de la poulie réceptrice
- C_m le couple maximal disponible sur le moteur nécessaire au démarrage
- n le rendement de la transmission
- λ le rapport de réduction du réducteur

1. Exprimer:

- a) ω_r en fonction de ω_m et λ .
 - b) P en fonction de C et ω_m
 - c) P_r en fonction de C_r , ω_m et λ
 - d) P en fonction de P_r et η
 - e) C en fonction de C_r , λ et η
 - f) La relation entre C_m , C_r , λ et η pour que le démarrage soit assuré

Données : $\eta = 88\%$ C_r = 25N. m et C_m = 7.33N. m.

2. Conclure.

EXERCICE III: (6 pts)

Un homme (H) de masse m_H marche d'un mouvement rectiligne uniformément accéléré d'accélération γ_H , sur une pirogue (P) de masse m_P et de longueur L_P (Figure 4). La terre est supposée galiléenne et \hat{i} est le vecteur unitaire de l'horizontale à la trajectoire des mobiles.

L'homme et la pirogue sont assimilés à des particules H et p.

Notations:

- $\vec{\gamma} = -\gamma \hat{\imath}$ l'accélération de l'homme par rapport au rivage
- $\overrightarrow{\gamma_P} = -\gamma_P$ î l'accélération de la pirogue par rapport au rivage
- $\overline{\gamma_H} = -\gamma_H$ îl'accélération de l'homme par rapport à la pirogue
- $\overline{F_{E/P}} = -F$ îl'action horizontale de l'eau sur la pirogue
- 1. Qualifier le mouvement de :
 - 1.1. L'homme par rapport au rivage
 - 1.2. L'homme par rapport à la pirogue
 - 1.3. La pirogue par rapport au rivage
- 2. Considérer le système (S) constitué de H et de P
 - 2.1. Exprimer γ en fonction de γ_H et γ_P

